(6 marks) ## Gravity Fields Past Paper Questions Jan 2002—Jan 2010 (old spec) | Com | munic | ations satellites are usually placed in a geo-synchro | nous orbit. | |-----|-------|---|-------------| | (a) | State | two features of a geo-synchronous orbit. | Q2 Jun 2003 | (2 marks) | | (b) | Give | n that the mass of the Earth is 6.00×10^{24} kg and it | , , | | | (i) | show that the radius of a geo-synchronous orbit r | _ | (ii) | calculate the increase in potential energy of a sa
from the Earth's surface into a geo-synchronous | You | may be awarded marks for the quality of written communication provided in your | answer. | |-------|--|---------| | | Q4 Jun 2004 | | | | | | | | | | | | | | | | | | | ••••• | | ••••• | | | | ••••• | | | (2 | 3 marks | | Give | e an example of a situation where a body | | | (i) | travels at constant speed but experiences a continuous acceleration, | | | | | | | | | | | (ii) | experiences a maximum acceleration when its speed is zero. | | | | | ••••• | | | | | The Moon's orbit around the Earth may be assumed to be circular. Explain why no work is done | | | Q3 Jan 2005 | |------|---|--| | | | | | | | | | | | | | | | (2 ma | | (b) | Use the following data to calculate the | gravitational potential at the surface of the Moon. | | | mass of Earth $= 81 \times \text{mass of Moon}$ | | | | radius of Earth = $3.7 \times$ radius of Moon gravitational potential at surface of the | | | | gravitational potential at surface of the | Eartii — –03 M Jkg | (3 ma | | (c) | Sketch a graph on the axes below to inc | dicate how the gravitational potential varies with dista | | (•) | | of the Earth to the surface of the Moon. | | | | | | grav | ritational
ential/MJkg ⁻¹ | | | P | surface
of Earth | surface
of Moon | | | 0 + | distance | | | | | | | | | | | | | | | | | (ii) Neptune orbits the Sun once every 165 Earth years. | Calculate the ratio | distance from Sun to Neptune distance from Sun to Earth | | |---------------------|---|-----------| (| (4 marks) | | a satellite is used for communications. You may be awarded marks for the quality of written communication in your and the surface of a planet of mass <i>M</i> and radius <i>R</i> . (i) Using these symbols, give an equation that relates the gravitational force satellite to the centripetal force. | • | (a) | and | ficial satellites are used to monitor weather conditions on Earth, for surveillance for communications. Such satellites may be placed in a <i>geo-synchronous</i> orbit or low polar orbit. Q4 Jan 2006 | |---|---|-----|------|--| | (b) A satellite of mass m travels at angular speed ω in a circular orbit at a height h the surface of a planet of mass M and radius R. (i) Using these symbols, give an equation that relates the gravitational force satellite to the centripetal force. (ii) Use your equation from part (b)(i) to show that the orbital period, T, of the satellite is given by | | | | cribe the properties of the geo-synchronous orbit and the advantages it offers when sellite is used for communications. | | (a) (b) A satellite of mass m travels at angular speed ω in a circular orbit at a height h the surface of a planet of mass M and radius R. (i) Using these symbols, give an equation that relates the gravitational force satellite to the centripetal force. (ii) Use your equation from part (b)(i) to show that the orbital period, T, of the satellite is given by | | | You | may be awarded marks for the quality of written communication in your answer. | | (a) (b) A satellite of mass m travels at angular speed ω in a circular orbit at a height h the surface of a planet of mass M and radius R. (i) Using these symbols, give an equation that relates the gravitational force satellite to the centripetal force. (ii) Use your equation from part (b)(i) to show that the orbital period, T, of the satellite is given by | | | | | | (a) (b) A satellite of mass m travels at angular speed ω in a circular orbit at a height h the surface of a planet of mass M and radius R. (i) Using these symbols, give an equation that relates the gravitational force satellite to the centripetal force. (ii) Use your equation from part (b)(i) to show that the orbital period, T, of the satellite is given by | | | | | | (a) (b) A satellite of mass m travels at angular speed ω in a circular orbit at a height h the surface of a planet of mass M and radius R. (i) Using these symbols, give an equation that relates the gravitational force satellite to the centripetal force. (ii) Use your equation from part (b)(i) to show that the orbital period, T, of the satellite is given by | | | | | | (a) (b) A satellite of mass m travels at angular speed ω in a circular orbit at a height h the surface of a planet of mass M and radius R. (i) Using these symbols, give an equation that relates the gravitational force satellite to the centripetal force. (ii) Use your equation from part (b)(i) to show that the orbital period, T, of the satellite is given by | | | | | | (a) (b) A satellite of mass m travels at angular speed ω in a circular orbit at a height h the surface of a planet of mass M and radius R. (i) Using these symbols, give an equation that relates the gravitational force satellite to the centripetal force. (ii) Use your equation from part (b)(i) to show that the orbital period, T, of the satellite is given by | | | | | | (a) (b) A satellite of mass m travels at angular speed ω in a circular orbit at a height h the surface of a planet of mass M and radius R. (i) Using these symbols, give an equation that relates the gravitational force satellite to the centripetal force. (ii) Use your equation from part (b)(i) to show that the orbital period, T, of the satellite is given by | | | | | | (b) A satellite of mass m travels at angular speed ω in a circular orbit at a height h the surface of a planet of mass M and radius R. (i) Using these symbols, give an equation that relates the gravitational force satellite to the centripetal force. (ii) Use your equation from part (b)(i) to show that the orbital period, T, of the satellite is given by | | | | | | the surface of a planet of mass M and radius R. (i) Using these symbols, give an equation that relates the gravitational force satellite to the centripetal force. (ii) Use your equation from part (b)(i) to show that the orbital period, T, of the satellite is given by | | | | (3 marks) | | (ii) Use your equation from part (b)(i) to show that the orbital period, <i>T</i> , of the satellite is given by | | (b) | | tellite of mass m travels at angular speed ω in a circular orbit at a height h above surface of a planet of mass M and radius R . | | satellite is given by | | | (i) | Using these symbols, give an equation that relates the gravitational force on the satellite to the centripetal force. | | satellite is given by | | | | | | satellite is given by | | | | | | satellite is given by | | | | | | $T^2 = \frac{4\pi^2 (R+h)^3}{GM}.$ | | | (ii) | Use your equation from part (b)(i) to show that the orbital period, T , of the satellite is given by | | | | | | $T^2 = \frac{4\pi^2 (R+h)^3}{GM}.$ | | | | | | | | | | | | | | (iii) Explain why the period of a satellite in orbit around the Earth cannot be less tha 85 minutes. Your answer should include a calculation to justify this value. | n | |--|-------| | mass of the Earth = 6.00×10^{24} kg
radius of the Earth = 6.40×10^6 m | | | | | | | . • • | | | | | | • • • | | | | | (6 mark | is) | | c) Describe and explain what happens to the speed of a satellite when it moves to an orb that is closer to the Earth. | it | | | | | | | | | | | (2 mark | | | | Ph | ysicsA | ndMathsTutor.com | 8 | |---|-----|--------|--|------------| | 4 | (a) | | what is meant by <i>gravitational field strength</i> at a point in a gravitation and state whether it is a scalar or vector quantity. | ational | | | | | Q4 Jan 2007 | | | | | ••••• | | ••••• | | | | | | | | | | | | | | | | ••••• | (2 |
marks) | | | (b) | | tellite of mass 2.5×10^3 kg is to be moved from the surface of the large of radius 1.6×10^7 m around the Earth. | Earth | | | | (i) | Calculate the gravitational force acting on the satellite when in or | bit. | ••••• | | | | (ii) | Given that the gravitational potential at the surface of the Earth (of the Earth) is -63 MJ kg ⁻¹ , calculate the increase in the gravitational potential energy of the satellite when it is placed in the orbit. | | | | | | | ••••• | | | | | | ••••• | | | | | | | | | | | | ••••• | | | | | | | (5 marks) (c) Draw a graph on the axes below to show how the gravitational potential due to the Earth varies with distance, *r*, measured from the centre of the Earth, for points outside the Earth. On the horizontal axis, *R* is the radius of the Earth. (3 marks) | 5 | (a) | arou | By considering the force equation for a satellite of mass m in an orbit of radius r around a planet of mass M , show that the orbital time period T of the satellite does not depend upon m . Q5 Jan 2008 | | | | | |---|-----|-----------|--|--|--|--|--| | | | ••••• | ••••• | (3 marks) | | | | | | | (b) | Its of | of the moons of Jupiter, Ganymede, is the largest satellite in the solar system. bital period is equal to 7.15 Earth days and the radius of its orbit is $\times 10^6$ km. | | | | | | | | Calculate | | | | | | | | | (i) | the angular speed of Ganymede in its orbit, | (ii) | the centripetal acceleration of Ganymede in its orbit, | (iii) | the mass of Jupiter. | | | | | |-------|----------------------|-----------|--|--|--| (5 marks) | | | | 3 (a) The graph shows how the gravitational force F between a 1000 kg mass and the Moon varies with the distance r from the centre of the Moon for points outside its surface. Q3 Jun 2008 | 3 | (a) | (i) | Explain why the | graph has | this shape | for points | outside the | surface. | |---|-----|-----|-----------------|-----------|------------|------------|-------------|----------| | ••••• | ••••• | ••••• | ••••• | • | |-------|-------|---|-------|---| ••••• | | • | ••••• | • | | | | | | | | | | | | | | | | | | | 3 (a) (ii) Use data from the graph to determine the mass of the Moon. |
 | | | | |-----------|-------|-------|--------| | | | | | |
••••• | ••••• | | ••••• | |
 | | | | | | | | | |
 | ••••• | ••••• | •••••• | |
 | | | | | | | | | (4 marks) | 3 | (b) | (i) | From the graph, estimate the potential energy lost by the 1000 kg mass as it falls to the surface of the Moon from a very large distance above it. Explain how you arrive at your estimate. | |---|-----|------|--| 3 | (b) | (ii) | By considering the 1000 kg mass as a projectile, calculate the speed at which it should it be thrown vertically upwards from the surface of the Moon if it is to escape from the Moon's gravitational field. | (5 marks) | | | | | | 3 (a) For a satellite in orbit around a planet, theory shows that the relationship between the mean orbital radius, R, and the orbital period, T, is $$R^3 = \frac{GMT^2}{4\pi^2}$$, where *M* is the mass of the planet. **Q3 Jun 2009** The graph in **Figure 3**, which is constructed from measurements based on observations, shows how R varies with $T^{2/3}$ for five of the inner satellites of the planet Saturn, named Mimas, Enceladus, Tethys, Dione and Rhea. Figure 3 | 3 | (a) | (i) | Determine the gradient of the graph in Figure 3 in ms ^{-2/3} . | |---|-----|-------------|---| | 3 | (a) | (ii) | Explain how the relationship between R and T in the equation given in part (a) is supported by this graph. | 3 | (a) | (iii) | Use your value for the gradient, together with any other necessary data, to calculate the mass of Saturn. | (6 marks) | | 3 | (b) | It is Sun. | possible to plot a graph of R against $T^{2/3}$ for the orbits of the planets around the | | | | | e and explain one similarity, and one difference, between the properties of this h and the graph shown in Figure 3 . | | | | Similarity: | | | | | | | | | | Diffe | rence: | | | | ••••• | |